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Deterministic method of describing rupture 
probability application to the analysis of 
high-modulus carbon fibres 

E. B O U R G A I N ,  J. J. M A S S O N  
Institute for Materials Research, DLR, D-5000 KOln 90, Germany 

The fitting of experimental fibre strength distribution by a Weibull distribution function must 
theoretically allow the prediction of strength distribution in other conditions as, for example, 
other gauge lengths, because it is the hypothesis of the Weibull model that the material is well 
described. It may be assured that this last assumption is almost always fully unrealistic, and 
applied to the case of aluminium-coated high-modulus carbon fibres, the Weibull statistics do 
not lead to any convenient prediction of the size effect. A new approach is proposed. It is 
based on a precise description of the real population of defects and no longer on an idealized 
and a priori simplified distribution as proposed by the Weibull model. It is completely 
deterministic and does not require any parameter adjustment. It permits an extremely precise 
prediction of the experimental strength distribution at other gauge lengths, exactly describing, 
for example, the experimentally observed jumps in the curve (Pr-cy,). Moreover, it results in a 
very significant optimization of testing procedure, in determining only the necessary gauge 
lengths at which strength measurements have to be made in order to allow a complete 
description of the defect population and thus a confident strength prediction at every gauge 
length. Therefore, by giving a quantitative representation of the critical defect distribution in 
the material by a function of their failure probability, the damage, caused by annealing 
treatment or chemical reaction, may be thoroughly analysed as a function of the microstructure 
of the material and particularly at the level of the critical defects, whose evolution (increasing 
of failure propensity) may be easily followed. This method has been applied very successfully 
in the case of alumimum-coated high-modulus HM35 carbon fibres. 

1. Int roduct ion 
The mechanical properties of polymer-, metal- or 
ceramic-matrix composites are widely correlated to 
those of their reinforcement. In the particular case of 
metal-matrix composites (MMC) made by hot-pres- 
sing of prepreg layers, their quality mainly depends on 
the quality of the precursor and then of the fibres. The 
experimental results presented below concern C/A1 
MMC [1]. 

A rough statistical characterization of the fibres (the 
Weibull parameter, m, values about 6) leads to the 
assumption that the composite must break when only 
15% of the fibres are broken, because the bonding 
between fibres and matrix is weak (Coleman's model 
[2]). The fracture surface observations confirm this 
assumption (Fig. 1). The study of the C/A1 MMC 
strength can then amount to the study of the reinfor- 
cing fibres. The optimization of the quality of the 
MMC by its manufacturing can come down to estab- 
lishing how the fibre strength is degraded by reaction 
with aluminium during hot-pressing. 

Single fibres, which are representative of the reinfor- 
cing fibres in the MMC, have been subjected to tensile 
tests at six different gauge lengths. The Weibull statist- 
ical approach has been used to analyse the strength 
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measurements and to allow the prediction of strength 
distributions at other gauge lengths, for example, at 
greater gauge length, to calculate a real structure as 
well as elementary length in a fracture model of 
composite material [3]. The Weibull statistics have 
been shown here to be inadequate to give a good 
prediction of the size effect. 

A new statistical mechanics approach of the frac- 
ture, presented below, has therefore been developed. It 
allows an extremely precise prediction of the experi- 
mental strength distributions at other gauge lengths. 
Moreover, it allows one to reduce very significantly 
the testing procedure necessary for confident strength 
prediction at every gauge length. It is based on a 
precise description of the real population of critical 
defects (able to lead to rupture) and no longer on an 
idealized and a priori simplified distribution, as pro- 
posed by the Weibull model. 

Consequently, the damaging of the carbon fibre by 
reaction with aluminium may be followed separately 
for each defect, according to its failure propensity (size, 
shape, kind of defect, etc). As an application it is now 
possible to make a qualitative and quantitative predic- 
tion of the damage undergone at the level of more 
critical defects, which cannot be observed experi- 
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Figure 1 Fracture surface of C/AI composite. 

mentally through tensile tests, because it would re- 
quire too small gauge lengths, but which may control 
the rupture of the MMC. 
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Figure 2 Weibull correlation curves of experimental strength 
distributions at the two extreme gauge lengths. L = ( + ) 40 ram, 
( x )  2.5 mm. 

2. S i ze  e f f e c t :  t h e  Weibu l l  a p p r o a c h  
Single high-modulus HM35-fibres have been sub- 
jected to an annealing treatment with aluminium, 
simulating temperature and atmosphere conditions 
of composite processing [1]. They are denoted 
"HM35/AI" below. Tensile tests were then made using 
a method similar to ASTM-D 3379 [4], at six different 
gauge lengths, L. The two extreme experimental 
strength distributions (cumulative failure probability 
function) as well as their Weibull correlations, F(cy), 
are reported in Fig. 2. 

m 

As the Weibull statistics fit the failure distribution of 
HM35/A1 well, the Weibull parameter m must be 
constant from one length to the other and the scale 
parameter, Cyo(L), must verify Equation 2 

1 
In Go(L ) = K - - - l n L  (2) 

m 

where K is a constant. It has already been demon- 
strated [5] that a great error (more than 35%) may be 
expected in the determination of the parameter m 
when it is deduced from a distribution at fixed length. 
The estimation of the parameter oo(L ) is, however, 
always very confident ( < 5% error). 

In the ease of HM35/A1, the Weibull parameter, m, 
of the calculated strength distribution at fixed length 
varies between 4.4 and 7.5. The average value ofm = 6 
may be retained for characterizing the HM35/AI 
fibres, the experimental results being within the ex- 
pected interval of estimation error (Fig. 3a). According 
to Equation 2, another determination of this para- 
meter has been made from the regression line describ- 
ing the effect of the real size on the scale parameter 
(Fig. 3b, e). The new estimation is then m * =  11.5, 
almost twice the previous one. Moreover, the correla- 
tion factor r = 0.85, is relatively bad. Another ap- 
proach, that includes a threshold stress, ou, has been 
attempted 

[ L ( o - O u ~ "  1 (3) 
F(cy) = 1 - exp - Loo CYo / J 
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The physical meaning of this additional parameter can 
be explained as follows: the rupture stress of a very 
long fibre corresponding to 63% cumulative failure 
probability would not be equal to zero, but be ~u > 0. 
In this way, the correlation factor is much better: 
r = 0 . 9 9  when ~u = 2617 MPa, but the new regres- 
sion parameter, m * =  0.94, is absolutely unrealistic 
as a Weibull parameter describing the experimental 
distribution. 

In this particular case of carbon fibres, as well as in 
other cases of carbon, alumina and SiC fibres already 
tested, the Weibull statistics prove unable to predict 
confidently the size effect, i.e. the decrease in the 
measured strength at given cumulative failure prob- 
ability with increasing gauge length. 

3. A n e w  de te rmin is t ic  approach t o  
ru p t u  re 

The Weibull statistics is based on an idealized and a 
priori simplified distribution of critical defects in the 
material. It may now be assumed that this representa- 
tion is insufficient and, indeed, completely inadequate 
for any precise prediction of the material behaviour. 
The new approach, proposed here is based on the idea 
that the material may be characterized by a continu- 
ous distribution of critical defects that are peculiar to 
the studied material and which may result from the 
manufacturing as well as from subsequent treatment 
or damage. 

Thus, the HM35/A1 surface shows a complete popu- 
lation of critical defects, more or less large, of various 
shapes (Fig. 4a). It may be assumed that, among these 
defects, some are severe enough to be able to lead to 
fracture. The observation of HM35/A1 fracture sur- 
faces justifies such an assumption (Fig. 4b). 

3.1. Formula t ion  of the  model  
Let us imagine an infinite fibre. It contains an exhaust- 
ive population of critical defects (defects which can 
lead to fracture when the fibre is under load). Each 
defect may then be characterized by the critical stress, 
cyo, which would be sufficient to extend it up to fibre 
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fracture. It is then denoted by "oc-defect". The c~- 
defects (o~ fixed) distribution (or appearance prob- 
ability) may be given by the characteristic length L 
(o~), schematically separating two such defects 
(Fig. 5a). 

The strength measurements are practically made 
with fibres of finite length, L, denoted "L-fibres". A 
L-fibre contains N(L) defects which may be ordered 
according to their respective critical stresses: 
{eye(l) < . . .  < o~[N(L)]}. The cyc(1)-defect is then the 
most critical defect of the L-fibre and cyr must be 
thus the L-fibre strength. 

By definition, the presence probability of a cyo-defect 
in an L-fibre has the value 

P l ( O ' c ,  L) = ,S (4) 
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Figure 3 The dependence of the Weibull parameter, m, on its 
calculation method. (a) Weibull parameter of calculated strength 
distribution at fixed gauge length, m =f[ln(L)] .  (b, c) Regression 
line slopes determining the observed size effect. (b) ln(qo) 
=f[ ln(L)] ;  (c) ln(~ 0 - o',) =f[ ln(L)] ,  c~, = 2617 MPa. ( + ) Ex- 

perimental values, (--) Weibull correlation. 

o, is then 

P2(oc, L, q) 

where (Fig. 5b) 

P1(%, L)5(o -cyr (5) 

5(x) = { ~ i f x < 0  
otherwise 

The probability that an L-fibre is broken at the load- 
ing level, cy, is then 

P,(L, o) = 1 - I][1 - P2(a0, L, ~)] (6) 

which may be rewritten in case of a continuous dis- 
tribution 

Pr(L,G) = 1 -  e x p ( f f l n { l -  e [ L ) ] } d c ~ c )  

(7) 

Let us assume that tensile tests have been made at the 
gauge length L o, and then, that the strength distribu- 
tion at this length po(~) is known. It follows from 
Equation 7 that the strength distribution at the new 
gauge length, L, is given by 

dp  ~ 

I l l  ( { ~ o [  ~- (oc)_  - ~ o-dT2-_ j ) / j T ) ' d~  c7 P,(L,~) = 1 - - e x p  In 1 - s  1 - - e x p  1 _  p r ( ~ r  , (8) 

where 

~(x) = {1 i f x < - I  
otherwise 

The probability that the o~-defect may lead to the 
fracture of an L-fibre subjected to the tensile loading, 

3.2. D iscuss ion  
This statistical approach of fracture allows us to 
predict the failure probability at every length from the 
strength distribution measured at fixed length, but 
only within the strength dispersion band observed at 
this length (in fact, where po(~) is known). Thus, to 
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predict the failure probability at any length, corres- 
ponding to rupture stress smaller than the smallest or 
higher than the highest observed one, it would be 
necessary to make a hypothesis on the defect distribu- 
tion shape in this unobserved stress field portion. This 
is what the Weibull statistics does directly, implicitly 
and with very strong and unrealistic hypotheses. 

Moreover, if the experimental distribution, p O(~), is 
determined for too great a length, Lo, such as there 
exists a value cy* verifying L (cy*) < Lo, no rupture of 
fibres can thus be observed over ~*. To let the entire 
defect distribution appear, it would consequently be 
necessary to test the fibres at the smallest possible 
gauge length. 

However, with a limited number of tensile tests at 
such a small gauge length, the probability is very small 
to reveal very critical defects, t ha t  are rare in the 
material. Consequently, a large number of tests must 
be performed at this length to give a chance to observe 
all the defects. The most sparing testing work method 
is thus to perform tensile tests at different com- 
plementary gauge lengths. 

3.3. Application to the experimental results 
of H M35/AI 

According to the previous discussion, two experi- 
mental distributions would have been enough to 
give the present description of the HM35/A1 ma- 
terial: 2.5 ram, the smallest tested gauge length and 
20 ram, which allows optimal scanning of the critical 
defects dispersion (Fig. 6). Indeed, the cyo-defect 
(~c ~ 3.0 Gpa) corresponding to the failure prob- 
ability of 20% for the gauge length 2.5 ram, corres- 
pond to a failure of 75% for the gauge length 20 ram. 
The more critical defects (~c < 3.0 GPa) are observed 
through the strength measurements at the gauge 
length 20 ram, the less critical defects (cy~ > 3.0 GPa) 
through the strength measurements at 2.5 mm. To be 
able to give such a precise description of the defect 

distribution in the fibre, it would be necessary to make 
more than 1000 tests at a fixed gauge length between 
2.5 and 20 mm, instead of about 60 tests in the method 
used here. The new approach thus allows savings of 
about 95% of otherwise needed tensile tests. To de- 
scribe a new complementary part of the critical defect 
distribution, it would be optimal to test  30 HM35/A1 
single fibres at the new gauge length of 150 mm which 
is practically unrealizable. 

It is of great interest to emphasize that the observed 
jumps in the experimental curves no longer result only 
from a statistical error, as classically considered, but 
essentially reveal the real concentrations of defects 
around some critical stress levels (here, for example, 
1.8, 2.4, 2.7, 3, 3.2 and 4 GPa). The prediction of the 
distribution at a new gauge length from an experi- 
mental distribution must consequently reproduce 
these jumps. For  example, the distribution at 2.5 mm 
has been calculated from the experimental one at 
20 mm, and the perfect fitting with the experimental 
curve at 2.5 mm is noteworthy (Fig. 7). 

4. Analysis of damage by annealing 
t rea tment  of H M 3 5 / A I  f ibres 

4.1. Interface reaction of HM carbon fibres 
with aluminium 

High-modulus carbon fibres react with aluminium at 
temperatures above 500 ~ in a vacuum to form alu- 
minium carbide, AI4C 3 [6]. During the initial stage of 
the reaction the carbides are produced from active 
sites on the fibre surface, e.g. at edges of carbon-based 
planes perpendicular to the fibre surface or at geomet- 
rical irregularities on the surface. In a second stage 
they grow both into the matrix and into the fibre. The 
bonding at the interface between carbides and matrix 
is more stable than between carbides and fibre [7]. 
Therefore, the roots of carbide crystals act as notches 
on the fibre surface (see Fig. 4), Which has a weakening 
effect on the fibre strength. Carbide formation is diffu- 
sion-controlled and therefore dependent on time and 
temperature [-8]. 

4.2. Experiments 
In order to examine the influence of fibre/matrix 
reaction on the mechanical properties of HM35/A1, 
single fibres were tested in tension after different an- 
nealing treatments (at 550, 600 and 650 ~ for 10, 30 or 
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Figure 4 Critical defects distribution in the material, (a) HM35/AI 
fibre surface (after annealing treatment and dissolution of 
aluminium matrix). (b) Crack propagation. 
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Figure 5 Deterministic approach of the rupture. (a) Representation 
of the defects distribution, L (cy~). (b) Model of rupture. 
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Figure 6 Strength and observed defect distributions at different 
gauge lengths. 

60 rain), which simulated the temperature and atmo- 
sphere conditions of composite processing. Tests were 
performed at a fixed gauge length, L, of 5.5 mm. More 
details on the experimental procedure are reported 
elsewhere [1, 9]. 
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Figure 7 Application of the approach to the prediction of strength 
distribution at other gauge lengths. 
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Figure 8 Strength and defect distributions after annealing treatment 
at 600 ~ (~): l, 10 min; 2, 30 min; 3, 60 min. ( + ): 4, fibres from 
composite. 

4.3. Results and discussion 
As an example, Fig. 8 shows cumulative strength 
distributions obtained after annealing treatment at 
600 ~ for different times. Each step observed in the 
distribution curves corresponds to a at-defect popula- 
tion, whose probability to appear (i.e. concentration) 
along the fibre is high, as demonstrated in Section 3. 
Each peak of the defect distribution corresponds 
to a jump in the strength distribution (with the model 
proposed here, corresponding defect distributions 
have been calculated, Fig. 8). 

In the initial strength distribution (here 600~ 
10 min), each at-defect appears in a certain band of 
failure probability, corresponding to a jump whose 
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distribution will be the same, with the same steps. 
However, the distribution curve will be translated 
horizontally. That is what is observed in Fig. 8 for 
failure probabilities between 0.25 and 0.75. 

Two PAp-defect populations have been chosen in 
order to plot their relative critical stress as a function 
of annealing temperature and time: population 1 (or 2) 
corresponding to failure probability between 0.25 and 
0.35 (or 0.55 and 0.65). The stresses are normalized 
through the critical stress of the same defects in un- 
treated fibres. Fig. 9 is a three-dimensional representa- 
tion of the results, whereas Fig. 10 shows lines of 
iso-relative critical stress. The influence of annealing 
treatment is similar for both populations of defects. 
The relative critical stress has a local maximum at 
30 rain, 600 ~ At a constant temperature of 600 ~ 
for instance, the strength decreases between 0 and 
10 rain, increases between 10 and 30 rain, and then 
decreases again after 30 rain. This should be related to 
the mechanism of carbide formation. As a hypo- 
thetical sequence we propose: (1) formation of carbide 

Figure 9 Relative critical stress of "Pap-defects" as a function of 
annealing temperature and time. (a) Population 1, 0.25 ~< Pr 
(~c) ~< 0.35; (b) population 2, 0.55 ~< Pr (%) ~< 0.65. 
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roots in the fibre acting as notches (strength decrease); 
(2) diminution of stress concentration at the notch tip 
by smoothing of the defect due to growth crystals 
parallel to the fibre axis (strength increase); (3) carbide 
crystal growth into the fibre (strength decrease). 

All these tests were performed to simulate the influ- 
ence of composite processing temperature and time on 
the strength of fibres. To check this approach, indi- 
vidual tensile tests have been performed on fibres 
directly extracted from a composite plate. The results 
are also plotted in Fig. 8. Composite processing occur- 
red by solid-phase diffusion bonding at 600 ~ for 1 h. 
The shape of the distribution obtained is similar to 
that of aluminium-coated fibres annealed at 600 ~ for 
1 h, however, the distribution curve is translated hori- 
zontally to higher strengths. This may be an influence 
of the real processing temperature. Based on Figs 8 
and 10b, and according to the fibre strength distribu- 
tion, the real processing temperature of the composite 
must have been about 575 ~ instead of 600 ~ (i.e. an 
error less than 5% in manufacturing temperature). 

5. Conclusion 
A new approach describing fracture probability has 
been proposed and has been applied very successfully 
in the case of HM35/A1 fibres: the effect of fibre gauge 
length on the measured strength could be predicted 
very precisely, and the representation of the defect 
distribution was very helpful in the interpretation of 
results obtained after different annealing treatments. 

The new method is based on the analysis of inter- 
polated experimental results and no longer on the 
simple fitting by an a priori chosen function (e.g. the 
Weibull distribution). I t  leads, then, to an unbiased 
description of the defect distribution in the material 
and to a prediction of its fracture probability. It also 
indicates the limits of any prediction of the material's 

behaviour under conditions other than the observed 
ones (other gauge lengths, for example). 

Nevertheless, it has been demonstrated that the new 
method offers a significantly more precise description 
of actual fracture strength distribution and it offers 
better predictive capability than do the standard 
Weibull statistics. 
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